Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 67(20): e2300248, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37654048

RESUMO

SCOPE: Diet is one of the main factors that modifies intestinal microbiota composition. The search for foods that can reverse situations of intestinal dysbiosis such as that induced by antibiotics is of great interest. Buttermilk and whey are the main by-products produced by the dairy industry containing bioactive compounds. The aim of this study is to investigate the ability of whey and buttermilk-based formulas supplemented with lactoferrin and milk fat globule membrane (MFGM) to modulate the effects of clindamycin on mouse intestinal microbiota. METHODS AND RESULTS: Male C57BL/6 mice are treated with saline (control), clindamycin (Clin), a formula containing whey (F1) or buttermilk (F2), Clin+F1 or Clin+F2, and their fecal microbiota profiles are analyzed by sequencing of 16S rRNA gene using the MinION device. Clin induces alterations in both the composition and metabolic functions of the mice intestinal microbiota. The treatment with F1 or F2 reverses the effects of clindamycin, restoring the levels of Rikenellaceae and Lactobacillaceae families and certain pathways related to short-chain fatty acids production and tetrahydrofolate biosynthesis. CONCLUSION: Whey and buttermilk supplemented with lactoferrin and MFGM may be a bioactive formula for functional foods to prevent or restore microbiota alterations induced by antibiotic administration.


Assuntos
Leitelho , Microbioma Gastrointestinal , Humanos , Masculino , Animais , Camundongos , Soro do Leite , Antibacterianos/efeitos adversos , Clindamicina/efeitos adversos , Disbiose/induzido quimicamente , RNA Ribossômico 16S/genética , Lactoferrina/farmacologia , Camundongos Endogâmicos C57BL , Proteínas do Soro do Leite/farmacologia
2.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376017

RESUMO

The intestine represents one of the first barriers where microorganisms and environmental antigens come into tight contact with the host immune system. A healthy intestine is essential for the well-being of humans and animals. The period after birth is a very important phase of development, as the infant moves from a protected environment in the uterus to one with many of unknown antigens and pathogens. In that period, mother's milk plays an important role, as it contains an abundance of biologically active components. Among these components, the iron-binding glycoprotein, lactoferrin (LF), has demonstrated a variety of important benefits in infants and adults, including the promotion of intestinal health. This review article aims to provide a compilation of all the information related to LF and intestinal health, in infants and adults.

3.
Foods ; 12(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37238891

RESUMO

The dairy industry generates a large volume of by-products containing bioactive compounds that may have added value. The aim of this study was to evaluate the antioxidant and antigenotoxic effects of milk-derived products, such as whey, buttermilk, and lactoferrin, in two human cell lines: Caco-2 as an intestinal barrier model and HepG2 as a hepatic cell line. First, the protective effect of dairy samples against the oxidative stress caused by menadione was analyzed. All these dairy fractions significantly reversed the oxidative stress, with the non-washed buttermilk fraction presenting the greatest antioxidant effect for Caco-2 cells and lactoferrin as the best antioxidant for HepG2 cells. At concentrations that did not impact cell viability, we found that the dairy sample with the highest antigenotoxic power against menadione, in both cell lines, was lactoferrin at the lowest concentration. Additionally, dairy by-products maintained their activity in a coculture of Caco-2 and HepG2, mimicking the intestinal-liver axis. This result suggests that the compounds responsible for the antioxidant activity could cross the Caco-2 barrier and reach HepG2 cells on the basal side, exerting their function on them. In conclusion, our results show that dairy by-products have antioxidant and antigenotoxic activities, which would allow revaluing their use in food specialties.

4.
Life (Basel) ; 13(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37240731

RESUMO

Serotonin (5-HT) is a key neurotransmitter synthesized both in the gut and the central nervous system. It exerts its signaling through specific receptors (5-HTR), which regulate numerous behaviors and functions such as mood, cognitive function, platelet aggregation, gastrointestinal motility, and inflammation. Serotonin activity is determined mainly by the extracellular availability of 5-HT, which is controlled by the serotonin transporter (SERT). Recent studies indicate that, by activation of innate immunity receptors, gut microbiota can modulate serotonergic signaling by SERT modulation. As part of its function, gut microbiota metabolize nutrients from diet to produce different by-products, including short-chain fatty acids (SCFAs): propionate, acetate, and butyrate. However, it is not known whether these SCFAs regulate the serotonergic system. The objective of this study was to analyze the effect of SCFAs on the gastrointestinal serotonergic system using the Caco-2/TC7 cell line that expresses SERT and several receptors constitutively. Cells were treated with different SCFAs concentrations, and SERT function and expression were evaluated. In addition, the expression of 5-HT receptors 1A, 2A, 2B, 3A, 4, and 7 was also studied. Our results show that the microbiota-derived SCFAs regulate intestinal serotonergic system, both individually and in combination, modulating the function and expression of SERT and the 5-HT1A, 5-HT2B, and 5-HT7 receptors expression. Our data highlight the role of gut microbiota in the modulation of intestinal homeostasis and suggest microbiome modulation as a potential therapeutic treatment for intestinal pathologies and neuropsychiatric disorders involving serotonin.

5.
Vet Sci ; 10(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37104400

RESUMO

Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with drug-sensitive epilepsy, DSE; five with drug-refractory epilepsy, DRE) and non-epileptic beagle dogs (n = 12). A significant reduction after diet in the relative abundance of bacteria from the Actinobacteria phylum was observed in all dogs. Epileptic dogs showed a higher relative abundance of Lactobacillus compared with non-epileptic dogs at baseline but these differences disappeared after diet. Epileptic dogs also showed a significantly higher abundance of Negativicutes and Selenomonadales after dietary intervention. Baseline microbiota patterns were similar in non-epileptic beagles and dogs with DSE but significantly different from dogs with DRE. In non-epileptic and DSE groups, the MCT diet decreased the relative abundance of Firmicutes and increased that of Bacteroidetes and Fusobacteria, but the opposite effect was observed in dogs with DRE. These results suggest that the MCT diet effect would depend on individual baseline microbiota patterns and that ketogenic diets could help reduce gut microbiota differences between dogs with DRE and DSE.

6.
J. physiol. biochem ; 79(1): 147–161, feb. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-215720

RESUMO

As a consequence of altered glucose metabolism, cancer cell intake is increased, producing large amounts of lactate which is pumped out the cytosol by monocarboxylate transporters (MCTs). MCT 1 and MCT4 are frequently overexpressed in tumors, and recently, MCT inhibition has been reported to exert antineoplastic effects. In the present study, MCT1 and MCT4 levels were assessed in esophageal adenocarcinoma (EAC) cells and the effects of the MCT-1 selective inhibitor AZD3965, hypoxia, and a glucose overload were evaluated in vitro. Two EAC cell lines (OE33 and OACM5.1C) were treated with AZD3965 (10–100 nM) under different conditions (normoxia/hypoxia) and also different glucose concentrations, and parameters of cytotoxicity, oxidative stress, intracellular pH (pHi), and lactate levels were evaluated. MCT1 was present in both cell lines whereas MCT4 was expressed in OE33 cells and only in a small proportion of OACM5.1C cells. Glucose addition did not have any effect on apoptosis nor cell proliferation. AZD3965 increased apoptosis and reduced proliferation of OACM5.1C cells, effects which were abrogated when cells were growing in hypoxia. MCT1 inhibition increased intracellular lactate levels in all the cells evaluated, but this increase was higher in cells expressing only MCT1 and did not affect oxidative stress. AZD3965 induced a decrease in pHi of cells displaying low levels of MCT4 and also increased the sodium/hydrogen exchanger 1 (NHE-1) expression on these cells. These data provide in vitro evidence supporting the potential of MCT inhibitors as novel antineoplastic drugs for EAC and highlight the importance of achieving a complete MCT inhibition. (AU)


Assuntos
Humanos , Adenocarcinoma , Antineoplásicos , Simportadores/metabolismo , Hipóxia , Lactatos , Transportadores de Ácidos Monocarboxílicos/metabolismo
7.
J Physiol Biochem ; 79(1): 147-161, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342616

RESUMO

As a consequence of altered glucose metabolism, cancer cell intake is increased, producing large amounts of lactate which is pumped out the cytosol by monocarboxylate transporters (MCTs). MCT 1 and MCT4 are frequently overexpressed in tumors, and recently, MCT inhibition has been reported to exert antineoplastic effects. In the present study, MCT1 and MCT4 levels were assessed in esophageal adenocarcinoma (EAC) cells and the effects of the MCT-1 selective inhibitor AZD3965, hypoxia, and a glucose overload were evaluated in vitro. Two EAC cell lines (OE33 and OACM5.1C) were treated with AZD3965 (10-100 nM) under different conditions (normoxia/hypoxia) and also different glucose concentrations, and parameters of cytotoxicity, oxidative stress, intracellular pH (pHi), and lactate levels were evaluated. MCT1 was present in both cell lines whereas MCT4 was expressed in OE33 cells and only in a small proportion of OACM5.1C cells. Glucose addition did not have any effect on apoptosis nor cell proliferation. AZD3965 increased apoptosis and reduced proliferation of OACM5.1C cells, effects which were abrogated when cells were growing in hypoxia. MCT1 inhibition increased intracellular lactate levels in all the cells evaluated, but this increase was higher in cells expressing only MCT1 and did not affect oxidative stress. AZD3965 induced a decrease in pHi of cells displaying low levels of MCT4 and also increased the sodium/hydrogen exchanger 1 (NHE-1) expression on these cells. These data provide in vitro evidence supporting the potential of MCT inhibitors as novel antineoplastic drugs for EAC and highlight the importance of achieving a complete MCT inhibition.


Assuntos
Adenocarcinoma , Antineoplásicos , Simportadores , Humanos , Simportadores/metabolismo , Hipóxia , Lactatos , Transportadores de Ácidos Monocarboxílicos/metabolismo
8.
Biometals ; 36(3): 667-681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36335546

RESUMO

Milk is a source of proteins with high nutritional value and relevant biological activities. Bioactive milk proteins, like lactoferrin, are important for newborn development and can also be used as ingredients in functional products to improve health. Lactoferrin is essential in infant's diet, since protects against infections and promotes immune system maturation. Bovine lactoferrin is used to supplement formula milk in order to strengthen baby's defences against some pathogenic bacteria. Thus, lactoferrin supplemented formula can be a barrier against emergent pathogens, such as Cronobacter sakazakii, which has caused great concern in the last few years. Milk proteins generate bioactive peptides in the digestion process, and it is known that industrial processing can modify their susceptibility to digestion. Treatments such as heating have been shown to denature whey proteins and make them more easily digestible. Therefore, the aim of this study was to analyze the effect of technological treatments and gastrointestinal digestion on the antibacterial activity against C. sakazakii of proteins present in dairy formulas supplemented with lactoferrin. Commercial bovine lactoferrin has been shown to have antibacterial activity against C. sakazakii, both in the native state and after static in vitro gastrointestinal digestion. In addition, the digests obtained from dairy formulas subjected to technological treatments, either homogenization or pasteurization, have higher antibacterial activity than non-treated formulas. The release of low molecular weight peptides during the in vitro gastric digestion is probably the cause that would explain the enhanced antibacterial activity of the digested dairy formulas.


Assuntos
Cronobacter sakazakii , Lactoferrina , Lactente , Recém-Nascido , Humanos , Lactoferrina/farmacologia , Antibacterianos/farmacologia , Proteínas do Leite , Peptídeos/química , Digestão , Fórmulas Infantis/química
9.
Cells ; 11(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36496982

RESUMO

Chronic disorders of the intestine, such as inflammatory bowel diseases (IBDs) and irritable bowel syndrome (IBS), involve complex interactions between host and microbiota [...].


Assuntos
Doenças Inflamatórias Intestinais , Síndrome do Intestino Irritável , Microbiota , Humanos , Intestinos , Doenças Inflamatórias Intestinais/genética
11.
J. physiol. biochem ; 78(3): 689-701, ago. 2022. graf
Artigo em Inglês | IBECS | ID: ibc-216162

RESUMO

Intestinal serotonergic system is a key modulator of intestinal homeostasis; however, its regulation is still unclear. Toll-like receptor 9 (TLR9), an innate immune receptor, detects different external agents in the intestine, preserving intestinal integrity. Since little is known about TLR9 role in the intestine, our aim was to address the potential regulation between TLR9 and intestinal serotonergic system. Caco-2/TC7 cell line and intestinal tract of Tlr9−/− mice were used in this study. Serotonin uptake studies were performed, and molecular expression of different serotonergic components was analyzed by western blot and real-time PCR. Our results show that TLR9 activation inhibits serotonin transporter activity and expression, involving p38/MAPK and ERK/MAPK intracellular pathways, and reciprocally, serotonin increases TLR9 expression. Supporting this interaction, serotonin transporter, serotonin receptors and serotonin producer enzymes were found altered in intestinal tract of Tlr9−/− mice. We conclude that TLR9 could contribute to intestinal homeostasis by modulation of intestinal serotonergic system. (AU)


Assuntos
Humanos , Masculino , Camundongos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Células CACO-2 , Serotonina/metabolismo , Intestinos
12.
J Physiol Biochem ; 78(3): 689-701, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35670957

RESUMO

Intestinal serotonergic system is a key modulator of intestinal homeostasis; however, its regulation is still unclear. Toll-like receptor 9 (TLR9), an innate immune receptor, detects different external agents in the intestine, preserving intestinal integrity. Since little is known about TLR9 role in the intestine, our aim was to address the potential regulation between TLR9 and intestinal serotonergic system. Caco-2/TC7 cell line and intestinal tract of Tlr9-/- mice were used in this study. Serotonin uptake studies were performed, and molecular expression of different serotonergic components was analyzed by western blot and real-time PCR. Our results show that TLR9 activation inhibits serotonin transporter activity and expression, involving p38/MAPK and ERK/MAPK intracellular pathways, and reciprocally, serotonin increases TLR9 expression. Supporting this interaction, serotonin transporter, serotonin receptors and serotonin producer enzymes were found altered in intestinal tract of Tlr9-/- mice. We conclude that TLR9 could contribute to intestinal homeostasis by modulation of intestinal serotonergic system.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Receptor Toll-Like 9/metabolismo , Animais , Células CACO-2 , Humanos , Intestinos , Camundongos , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Receptor Toll-Like 9/genética
13.
Cells ; 11(11)2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681486

RESUMO

Irritable bowel syndrome (IBS) is a chronic functional bowel disorder characterized by intestinal dysmotility. Changes in intestinal microbiota (dysbiosis) can lead to alterations in neuro-muscular functions in the gut. Toll-like receptors (TLRs) 2 and 4 recognize intestinal bacteria and are involved in the motor response induced by gastrointestinal (GI) neurotransmitters. Acetylcholine (ACh) is a well-known neurotransmitter involved in the regulation of GI motility. This study aimed to evaluate the role of TLR2 and TLR4 in the intestinal motor-response induced by ACh in the mouse ileum, as well as the expression and function of the muscarinic and nicotinic ACh receptors. Muscle contractility studies showed that the contractions induced by ACh were significantly lower in TLR2-/- and TLR4-/- with respect to WT mice. In WT mice, the contractions induced by ACh were reduced in the presence of AF-DX AF-DX 116 (a muscarinic ACh receptor (mAChR) M2 antagonist), 4-DAMP (a mAChR M3 antagonist), mecamylamine (a nicotinic AChR receptor (nAChR) α3ß4 antagonist) and α-bungarotoxin (a nAChR α7 antagonist). In TLR2-/- mice, the contractions induced by ACh were increased by AF-DX 116 and mecamylamine. In TLR4-/- mice, the contractions induced by ACh were reduced by α-bungarotoxin and 4-DAMP. The mRNA and protein expressions of M3 and α3 receptors were diminished in the ileum from TLR2-/- and TLR4-/- with respect to WT mice. However, the levels of mRNA and protein of ß4 were diminished only in TLR4-/- but not in TLR2-/- mice. In conclusion, our results show that TLR2 and TLR4 modulates the motor responses to ACh in the mouse ileum. TLR2 acts on muscarinic M2 and M3 and nicotinic α3ß4 ACh receptors, while TLR4 acts on muscarinic M3 and nicotinic α3ß4 and α7 ACh receptors.


Assuntos
Motilidade Gastrointestinal , Íleo , Receptores Muscarínicos , Receptores Nicotínicos , Receptor 2 Toll-Like , Receptor 4 Toll-Like , Acetilcolina/farmacologia , Animais , Bungarotoxinas , Colinérgicos , Íleo/fisiologia , Mecamilamina , Camundongos , Antagonistas Muscarínicos/farmacologia , RNA Mensageiro/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
Food Funct ; 13(10): 5854-5869, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35545893

RESUMO

Background: Antibiotic administration can result in gut microbiota and immune system alterations that impact health. Bovine lactoferrin is a milk protein with anticancer, anti-inflammatory, antimicrobial and immune modulatory activities. The aim was to study the ability of native and iron-saturated lactoferrin to reverse the effects of clindamycin on gut microbiota and intestinal Toll-like receptor (TLR) expression in a murine model. Methods: Male C57BL/6 mice were treated with vehicle, clindamycin (Clin), native bovine lactoferrin (nLf), nLf + clindamycin (nLf_Clin), iron-saturated bovine lactoferrin (sLf) and sLf + clindamycin (sLf_Clin). Fecal samples of each group were collected, and bacterial DNA was extracted. Sequencing of 16s rRNA V4 hypervariable gene regions was conducted to assess the microbial composition. mRNA expression levels of TLRs (1-9) were determined in mouse colon by qPCR. Pearson's correlation test was carried out between bacteria showing differences in abundance among samples and TLR2, TLR8 and TLR9. Results: Beta-diversity analysis showed that the microbial community of the vehicle was different from the communities of Clin, nLf_Clin and sLf_Clin. At the family level, Bacteroidaceae, Prevotellaceae and Rikenellaceae decreased in the Clin group, and treatment with nLf or sLf reverted these effects. Clin reduced the expression of TLR2, TLR8 and TLR9 and sLf reverted the decrease in the expression of these receptors. Finally, TLR8 was positively correlated with Rikenellaceae abundance. Conclusion: In a situation of intestinal dysbiosis induced by clindamycin, lactoferrin restores the normal levels of some anti-inflammatory bacteria and TLRs and, therefore, could be a good ingredient to be added to functional foods.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Antibacterianos , Bactérias , Clindamicina , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Ferro/metabolismo , Lactoferrina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Receptor 2 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
15.
Chemistry ; 28(3): e202103048, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34806242

RESUMO

Complexes [Ru(η6 -C10 H14 )(Cl2 )(HdmoPTA)](OSO2 CF3 ) (1), [Ru(η6 -C10 H14 )(Cl2 )(dmoPTA)] (2) and [Ru(η6 -C10 H14 )(Cl2 )-µ-dmoPTA-1κP:2κ2 N,N'-MCl2 ] (M=Zn (3), Co (4), Ni (5), dmoPTA=3,7-dimethyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) have been synthesized and characterized by elemental analysis and spectroscopic techniques. The crystal structures of 1, 3 and 5 were obtained by single-crystal X-ray diffraction. The antiproliferative activity of the complexes was evaluated against colon cancer cell line Caco-2/TC7 by using the MTT protocol. The monometallic ruthenium complexes 1 and 2 were found to be inactive, but the bimetallic complexes 3, 4 and 5 display an increased activity (IC50 3: 9.07±0.27, 4: 5.40±0.19, 5: 7.15±0.30 µM) compared to cisplatin (IC50 =45.6±8.08 µM). Importantly, no reduction in normal cell viability was observed in the presence of the complexes. Experiments targeted to obtain information on the possible action mechanism of the complexes, such as cell cycle, ROS and gene expression studies, were performed. The results showed that the complexes display different properties and action mechanism depending on the nature of metal, M, bonded to the CH3 NdmoPTA atoms.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Antineoplásicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Cisplatino , Complexos de Coordenação/farmacologia , Humanos
16.
Biomedicines ; 9(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34944591

RESUMO

New dithiocarbamate cycloaurated complexes have been synthesized and their physicochemical and in vitro antitumor properties have been evaluated. All the performed studies highlighted good transport through the blood and biodistribution, according to the balance between the properties of hydrophilicity/lipophilicity and the binding of moderate strength to the BSA protein. Furthermore, none of the complexes exhibited reduction or decomposition reactions, presenting excellent physiological stability. The in vitro cytotoxic effect was evaluated on human colon cancer cell line Caco-2/TC7, and the complexes showed great antiproliferative activity and excellent selectivity, as much less effect was detected on normal Caco-2/TC7 cells. Most of the complexes exhibit antiproliferative activity that was better than or similar to auranofin, and at least nine times better than that of cisplatin. Its action mechanism is still under discussion since no evidence of cell cycle arrest was found, but an antioxidant role was shown for some of the selective complexes. All complexes were also tested as antimicrobial drugs, exhibiting good activity towards S. aureus and E. coli. bacteria and C. albicans and C. neoformans fungi.

17.
Animals (Basel) ; 11(11)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34827852

RESUMO

Epilepsy is one of the most common neurological disorders in humans and dogs. The structure and composition of gut microbiome associated to this disorder has not yet been analyzed in depth but there is evidence that suggests a possible influence of gut bacteria in controlling seizures. The aim of this study was to investigate the changes in gut microbiota associated to canine idiopathic epilepsy (IE) and the possible influence of antiepileptic drugs (AEDs) on the modulation of this microbiota. Faecal microbiota composition was analyzed using sequencing of bacterial 16S rRNA gene in a group of healthy controls (n = 12) and a group of epileptic dogs both before (n = 10) and after a 30-day single treatment with phenobarbital or imepitoin (n = 9). Epileptic dogs showed significantly reduced abundance of GABA (Pseudomonadales, Pseudomonadaceae, Pseudomonas and Pseudomona_graminis) and SCFAs-producing bacteria (Peptococcaceae, Ruminococcaceae and Anaerotruncus) as well as bacteria associated with reduced risk for brain disease (Prevotellaceae) than control dogs. The administration of AEDs during 30 days did not modify the gut microbiota composition. These results are expected to contribute to the understanding of canine idiopathic epilepsy and open up the possibility of studying new therapeutic approaches for this disorder, including probiotic intervention to restore gut microbiota in epileptic individuals.

18.
Animals (Basel) ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34359264

RESUMO

The study assessed changes in the gut microbiota of pigs after dietary supplementation with protected sodium butyrate (PSB) during the growing-fattening period (≈90 days). One gram of colon content from 18 pigs (9 from the treatment group -TG- and 9 from the control group -CG-) was collected. Bacterial DNA was extracted and 16S rRNA high-throughput amplicon sequencing used to assess microbiota changes between groups. The groups shared 75.4% of the 4697 operational taxonomic units identified. No differences in alpha diversity were found, but significant differences for some specific taxa were detected between groups. The low-represented phylum Deinococcus-Thermus, which is associated with the production of carotenoids with antioxidant, anti-apoptotic, and anti-inflammatory properties, was increased in the TG (p = 0.032). Prevotellaceae, Lachnospiraceae, Peptostreptococcaceae, Peptococcaceae, and Terrisporobacter were increased in the TG. Members of these families have the ability to ferment complex dietary polysaccharides and produce larger amounts of short chain fatty acids. Regarding species, only Clostridium butyricum was increased in the TG (p = 0.048). Clostridium butyricum is well-known as probiotic in humans, but it has also been associated with overall positive gut effects (increased villus height, improved body weight, reduction of diarrhea, etc.) in weanling pigs. Although the use of PSB did not modify the overall richness of microbiota composition of these slaughter pigs, it may have increased specific taxa associated with better gut health parameters.

19.
Metallomics ; 13(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34114030

RESUMO

New cyclometalated gold(III) complexes with a general structure [Au(C^N)(SR)2] or [Au(C^N)Cl(SR)], where C^N is a biphenyl ligand such as 2-(p-tolyl)pyridinate (tpy), 2-phenylpyridinate (ppy) and 2-benzylpyridinate (bzp) (SR = Spym, S(Me)2pym, 2-thiouracil (2-TU) and thiourea), and also with ethynyl moieties of the type [Au(C^N)(C≡C-Ar)2] (Ar = p-toluene and 2-pyridine) have been synthesized. All of them have been characterized, including X-ray studies of complex [Au(bzp)Cl(Spym)], and these studies have permitted to elucidate that leaving chloride ligand is trans located to CAr atom. After the full characterization, physicochemical properties were measured by evaluating drug-like water solubility and cell permeability (partition coefficient). All these experiments pointed that our complexes present adequate properties to be used as anticancer drugs. Although not all the complexes showed antiproliferative effects on Caco-2 cells, those that did were more cytotoxic than cisplatin; and complex [Au(tpy)Cl(2-TU)] is even more active than auranofin. In addition to this effectiveness, no evidence of cytotoxic effects was observed on considered normal cells (with the exception of [Au(bzp)Cl(2-TU)]. Further action mechanisms studies were performed using these selective complexes, showing cell cycle arrest on the G2/M phase, a proapoptotic behaviour and also the modification of some genes involved in tumorigenesis. Thus, as a result of this investigation, we present a new family of 17 cyclometalated complexes, 6 of them being selective and possible candidates to be used against colon cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Ouro/química , Pontos de Checagem da Fase M do Ciclo Celular , Antineoplásicos/química , Células CACO-2 , Proliferação de Células , Neoplasias do Colo/patologia , Complexos de Coordenação/química , Humanos , Modelos Moleculares
20.
Biochem Cell Biol ; 99(1): 54-60, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32538128

RESUMO

Milk contains bioactive molecules with important functions as defensive proteins; among them are the whey protein lactoferrin and proteins of the milk fat globule membrane (MFGM) present in buttermilk. The aim of this study has been to investigate the effects of lactoferrin, whey, and buttermilk as modulators of intestinal innate immunity and oxidative stress on intestinal epithelial cells, to evaluate its potential use for the development of functional foods. The mRNA expression levels of innate immune system Toll-like receptors (TLR2, TLR4, and TLR9), lipid peroxidation (malondialdehyde + 4-hydroxyalkenals) and protein expression levels of carbonyl were analyzed in enterocyte-like Caco-2/TC7 cells treated for 24 h with different concentrations of lactoferrin, whey, or buttermilk. None of the substances analyzed caused oxidative damage; however, whey significantly decreased the levels of lipid peroxidation. Furthermore, both lactoferrin and whey reduced the oxidative stress induced by lipopolysaccharide. With respect to TLR receptors, lactoferrin, whey, and buttermilk specifically altered the expression of TLR2, TLR4, and TLR9 receptors, with a strong decrease in the expression levels of TLR4. These results suggest that lactoferrin, whey, and buttermilk are potentially interesting ingredients for functional foods because they seem to modulate oxidative stress and the inflammatory response induced by the activation of TLRs.


Assuntos
Leitelho , Mucosa Intestinal/imunologia , Lactoferrina/imunologia , Receptores Toll-Like/imunologia , Soro do Leite/imunologia , Animais , Bovinos , Células Cultivadas , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Mucosa Intestinal/efeitos dos fármacos , Lactoferrina/química , Peroxidação de Lipídeos/imunologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Receptores Toll-Like/genética , Soro do Leite/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...